Module 6: Logic circuits with DNA strand displacement (part 2)

CSE590: Molecular programming and neural computation.

Fluorescent reporters can be used to follow reaction kinetics

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

Gate

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

The sequences of inputs and outputs can be completely independent.

Fluorescent reporters can be used to follow reaction kinetics

$$
\stackrel{2}{-3} \xrightarrow{\rightarrow} \quad 0-1 x
$$

Input/Analyte

In + Gate $\xrightarrow{\mathrm{k}}$ Out + Waste
(I0 nM gates, 30 nM readout, TAE $12.5 \mathrm{mM} \mathrm{Mg}{ }^{++}$)

Toehold strength determines reaction rate

$$
\stackrel{1}{-} \xrightarrow{3} \rightarrow \quad 0-1 x
$$

Input/Analyte

Gate

Competition and thresholding

Competition and thresholding

Competition and thresholding

Amplification: An input can act catalytically and release multiple outputs

Reaction mix

Gate

Fuel strand

Fuel strand

Qian and Winfree, Science (201I)
(see also Zhang et al. Science (2007), Seelig et al. JACS (2006), Turberfield et al. PRL (2004))

Amplification: An input can act catalytically and release multiple outputs

Reaction mix

Amplification: An input can act catalytically and release multiple outputs

$\xrightarrow{2}=-$

$\xrightarrow{2}-3$

Amplification: An input can act catalytically and release multiple outputs

$\xrightarrow{2}=-$

$\xrightarrow{2} \stackrel{3}{-}$

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

Amplification: An input can act catalytically and release multiple outputs

$$
\begin{array}{cc}
2 & 3 \\
2 & 3 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \stackrel{1}{2} \\
& \leftarrow_{I^{*}} \frac{2}{2^{*}} 3^{*} . \\
& \leftarrow_{1^{*}} \frac{2}{2^{*}} 3^{*}=
\end{aligned}
$$

Amplification: An input can act catalytically and release multiple outputs

Qian and Winfree, Science (201I)
(see also Zhang et al. Science (2007), Seelig et al.JACS (2006),Turberfield et al. PRL (2004))

Combining amplification and thresholding

Qian and Winfree, Science (201I)
(see also Zhang et al. Science (2007), Seelig et al.JACS (2006),Turberfield et al. PRL (2004))

Combining amplification and thresholding

Seesaw OR logic

Seesaw AND logic

OFF: 0 ~ 0.2

ON: $0.8 \sim 1$

$0=0.1 \times 1=0.9 x \quad 1 x=100 n M$

Slide credit: Lulu Qian

Logic gate cascades

$$
0=0.1 \times 1=0.9 x \quad 1 x=100 n M
$$

Slide credit: Lulu Qian

Logic gate cascades

$$
0=0.1 \times 1=0.9 x \quad 1 x=100 n M
$$

Slide credit: Lulu Qian

Logic gate cascades

Logic gate cascades

Slide credit: Lulu Qian

Multi input logic gates

Multi output logic gates

A four-bit square root circuit

Slide credit: Lulu Qian

A four-bit square root circuit

Slide credit: Lulu Qian

A four-bit square root circuit

$$
\cdots . y_{1}^{\mathrm{OFF}}-\mathrm{y}_{1}^{\mathrm{ON}} \quad \cdots \mathrm{y}_{2}^{\mathrm{OFF}}-\mathrm{y}_{2}^{\mathrm{ON}}
$$

$$
0=0.1 \times 1=0.9 x \quad 1 x=50 n M
$$

Slide credit: Lulu Qian

A four-bit square root circuit

Slide credit: Lulu Qian

Take home message so far

We can build simple logic gates and circuits using DNA. DNA strand displacement circuits are the largest engineered molecular circuits built so far. But they are still really small compared to electronic ciruits or biological gene regulatory networks.

Differences and similarities between electronic and molecular circuits

I. Lack of spatial isolation limits reusability and leads to crosstalk

2. Computation energy and non-reusable gates: Both inputs and gates are consumed as the circuit is evaluated by cascade reactions, so they cannot be reused.
3. Data encoding: Information is encoded in the sequences and concentration of biomolecules.
4. Lack of clear hardware software separation: Gates and circuits come preprogrammed for the specific computation they are meant to carry out.
5. Speed of computation: A circuits evaluation under typical reaction conditions takes minutes to hours.
6. Need for dual-rail logic: NOT is difficult to implement

One way forward: spatially localized DNA circuits

Strand displacement with DNA hairpins

input
Single-stranded DNA can bind to itself

Strand displacement with DNA hairpins

Strand displacement with DNA hairpins

hairpin transmission line

Strand displacement with DNA hairpins

output remains attached
input and output have the same sequence

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

hairpin transmission line

Rows of DNA hairpins act as wires

hairpin transmission line

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

hairpin transmission line

Rows of DNA hairpins act as wires

hairpin transmission line

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

fluorescent
 reporter

hairpin transmission line

Rows of DNA hairpins act as wires

Rows of DNA hairpins act as wires

fluorescent
 reporter

Rows of DNA hairpins act as wires

fluorescent
 reporter

Rows of DNA hairpins act as wires

fluorescent
reporter

Rows of DNA hairpins act as wires

fluorescent
reporter

Rows of DNA hairpins act as wires

Experimental validation

single spacing
double spacing

quadruple spacing
 15
triple spacing

Reaction conditions:
~10nM origami, 20nM probe, 200nM input, 200nM fuel

Take-home message

We can propagate a signal in a controlled way using only a fixed number of sequences

Wire of length \mathbf{n}	non- localized	localized
Nbr of domains	$2 n+1$	3

Localized OR gates

$$
\begin{aligned}
& H\left(A_{0}, Y\right)>H(X, Y) \\
& H\left(B_{0}, Y\right) \\
& \quad+F(Y, X)
\end{aligned}
$$

Friday, January 24, 14

Localized adder circuits

Take home message

Localization enables composability of DNA circuits

Outlook and future work

I. Communication between multiple origami enables circuits scale-up

2. Testing circuits in live cells

Summary

Summary

I. Circuits that can work in cells and other "wet" environments have interesting applications as therapeutics and diagnostics.

Summary

I. Circuits that can work in cells and other "wet" environments have interesting applications as therapeutics and diagnostics.
2. Synthetic DNA is an engineering material for the construction of nanoscale structures and circuits.

Summary

I. Circuits that can work in cells and other "wet" environments have interesting applications as therapeutics and diagnostics.
2. Synthetic DNA is an engineering material for the construction of nanoscale structures and circuits.
3. DNA strand displacement circuits are the largest rationally designed molecular circuits so far but size and reliability are limited by the need to make sequences of all components orthogonal.

Summary

I. Circuits that can work in cells and other "wet" environments have interesting applications as therapeutics and diagnostics.
2. Synthetic DNA is an engineering material for the construction of nanoscale structures and circuits.
3. DNA strand displacement circuits are the largest rationally designed molecular circuits so far but size and reliability are limited by the need to make sequences of all components orthogonal.
4. Spatial isolation allows us to organize the flow of information in a better way and makes it much easier to design and compose large circuits.

